Netleksikon - Et online leksikon Netleksikon er ikke blevet opdateret siden 2005. Nogle artikler kan derfor indeholde informationer der ikke er aktuelle.
Forside | Om Netleksikon

Kontinentaldrift

Kontinentaldrift eller pladetektonik (af græsk tekton = "bygningshåndværker") er en geologisk teori om, at Jordens ydre er opdelt i stive plader, som bevæger sig i forhold til hinanden. Teorien bygger på, at den yderste skal af jordens indre består af to lag: den ydre lithosfære og den indre asthenosfære. Teorien beskæftiger sig med forhold som: oceaners dannelse og forsvinden, årsagen til jordskælv og aktive vulkaner, foldning af stenmaterialet i bjergkæder, fossile dyrs og planters udbredelse og endelig kontinenternes skiftende størrelse og beliggenhed gennem den geologiske historie. Pladetektonikken opstod på grundlag af to geologiske iagttagelser: de dybe revner langs midten af oceanbunden og kontinentalbevægelserne, som den forklarer på én gang.

Table of contents
1 Centrale principper
2 Typer af forkastninger
3 Drivkræfter
4 De vigtigste plader
5 Historie og betydning
6 Se også

Centrale principper

Opdelingen af Jordens indre i en lithosfærisk og en asthenosfærisk del bygger på deres indbyrdes forskellighed med hensyn til fysiske egenskaber. Lithosfæren er mere kølig og stiv, mens asthenosfæren er mere varm og blød. Denne opdeling må ikke forveksles med den ”kemiske” opdeling af Jordens indre i henholdsvis kerne, kappe og skorpe.

Det grundlæggende udgangspunkt for pladetektonikken er, at lithosfæren består af adskilte “tektoniske plader”, som “flyder oven på den væskeagtige asthenosfære. Forskelle i deres viskositet får de tektoniske plader til at bevæge sig i forskellige retninger.

Den linje, hvor den ene plade møder den anden, kaldes "forkastningen", og den slags områder er ofte præget af geologiske begivenheder som jordskælv og dannelsen af topografiske formationer som bjergkæder, vulkaner og gravsænkninger. Forkastninger er hjemsted for hovedparten af verdens aktive vulkaner med bjergene langs "ildringen" rundt om Stillehavet som de mest aktive og velkendte. Disse brudområder behandles i detaljer nedenfor.

Tektoniske plader kan groft opdeles i to grupper: de kontinentalplader og oceanbundsplader. Forskellen består i tætheden af de materialer, som danner dem. Oceanbundens plader er mere tætte end de kontinentale plader på grund af deres højere indhold af kompakte mineraler. Resultatet er, at oceanbundspladerne som regel er under havniveau, mens kontinentalpladerne når op over havoverfladen. Det er i bund og grund et eksempel i stor skala på det fænomen, der er blevet kaldt Arkimedes’ bad (som lærte ham, at et legeme (i dette tilfælde hans eget!) der nedsænkes i en væske, får en opdrift der svarer til vægten af den fortrængte mængde væske).

Typer af forkastninger

De forskellige typer af forkastninger er:

Sideværts-forkastninger

Den ene plades bevægelse enten til højre eller til venstre i forhold til en anden langs geologiske brudlinjer kan skabe nogle meget iøjnefaldende virkninger på overfladen. På grund af deres indbyrdes
friktion kan pladerne ikke bare glide forbi hinanden. I stedet opbygges der trykbelastninger i begge plader, og når de overstiger et vist niveau, som overstiger friktionen mellem stenmaterialerne på begge sider, udløses den opsparede energi som revnedannelse eller bevægelser langs brudlinjen, De enorme mængder af frigjort energi er årsagen til jordskælv, som er et almindeligt fænomen langs brudlinjegrænser.

Et velkendt eksempel på denne type af forkastninger er San Andreas Brudlinjen, som findes langs vestkysten af Californien, og som kun er en enkelt af et helt kompleks af brudlinjer i området. På dette sted bevæger Stillehavspladen sig langs kysten, dvs. mod nord i forhold til den Nordamerikanske Plade.

Ekstensionelle forkastninger

Hvor der sker opbrud, bevæger to plader sig væk fra hinanden, og mellemrummet mellem dem udfyldes med nyt skorpemateriale, som stammer fra smeltet magma fra dybe lag under pladerne. Når plader glider fra hinanden, anses det somme tider for at stå i forbindelse med det fænomen, man kalder hot spots. Det er steder, hvor mægtige konvektionsbobler bringer meget store mængder af kappemateriale op i nærheden af overfladen, og bevægelsesenergien menes at være stor nok til at bryde skorpen i stykker. Det hot spot, som formodes at have skabt brudlinjen under Atlanterhavet ligger nu under Island, hvor revnen udvider sig med nogle cm pr. århundrede.

Disse geologiske fænomener kan iagttages på oceanpladerne, når der dannes brudlinjer midt ude i oceanbunden (f.eks. den Midtatalantiske Brudlinje), og i de kontinentale plader ved dannelsen af gravsænkninger (f.eks. den Østafrikanske Bruddal). Pladernes opbrud kan skabe brede brudzoner langs de midtoceaniske kæder. Bruddene spredes almindeligvis ikke ensartet, så dér hvor adskillelsen af naboblokke i kæderne foregår ujævnt, opstår der enorme brudkomplekser. Det er brudzonerne, som er én af de vigtigste årsager til jordskælv i havbunden. Et kort over havbunden viser et mærkværdigt mønster af kantede strukturer, som adskilles af linjer, der forløber vinkelret på oceankædens længdeakse. Hvis man sammenligner havbunden mellem brudzonerne med et transportbånd, der bærer kæden på hver side af bruddet væk fra den åbne revne, bliver begivenhedernes rækkefølge klar. De gamle bjergkamme, som ligger parallelt med den nuværende revne, vil ligge dybere, jo ældre de er (på grund af sammentrækning ved afkøling og fordi grundfjeldet giver efter for vægten).

Kompressionelle forkastninger

Når plader mødes, fremkalder det forskellige virkninger, afhængigt af den type skorpemateriale, som pladerne består af. Når en tung oceanplade tørner ind i en mindre tung kontinentalplade, bliver oceanpladen oftest trykket nedad, sådan at der dannes en overskydning. På overfladen er det topografiske kendetegn gerne en gravsænkning på oceansiden og en bjergkæde på kontinentsiden. Et eksempel på en kontinetal-oceanisk overskydningszone findes langs Sydamerikas vestkyst, hvor den oceaniske Nazcaplade trykkes ned under den kontinentale Sydamerikanske Plade.

Hvor to kontinentalplader støder sammen, vil de knuses og presses sammen, så der dannes lange bjergkæder, som f.eks. sker ved dannelsen af Himalaya på grænsen mellem den indiske og den Eurasiske Plade.

For nylig (26. december 2004) blev sammenstødet mellem den Australske Plade og den Eurasiske Plade pludselig udløst i en forskydning, som i løbet af få sekunder løftede havbunden flere meter over en 1000 km lang linje langs øen Sumatra. Det skabte en tsunami, som overskyllede og ødelagde bebyggelse på øerne og langs kysterne af det Indiske Ocean, og som fremkaldte store materielle skader og tab af mere end 230.000 menneskeliv i løbet af ganske få minutter.

Når to oceanplader mødes, danner de en øbue dér, hvor den ene plade skydes hen over den anden. Et godt eksempel på denne form for pladesammenstød er de japanske øer.

Drivkræfter

Pladebevægelserne skyldes dels et varmeoverskud i Jordens indre og dels tyngdekraften. Varmeoverskuddet kan ikke undslippe ved en stabil og ensartet varmeledning igennem kappen og skorpen. Derfor opstår der konvektionsstrømme, som bringer det varme materiale i kappen op til undersiden af lithosfæren. Det får den til at knække i de kolossale plader, som derefter kan bevæge sig i forhold til hinanden. Der er tre forskellige sæt af kræfter, som formentlig driver pladernes bevægelser:
  • Trykkræfter, som opstår når varmt kappemateriale stiger op
  • Trækkræfter, som opstår, hver gang varm magma når bunden af pladerne og må søge ud til siden.
  • Trækkræfter, som opstår, når den koldere, mere tætte og derved tungere del af pladen glider ned i dybet under overskydningen. Denne virkning øges yderligere, når tryk og varme skaber metamorfe bjergarter, som er endnu tættere og mere tunge.

Man regner med, at konvektionsstrømme opstår i et vist omfang nede i kappen. Det opstigende materiale under bjergryggene på oceanernes bund er givetvis en del af denne bevægelse. I de tidlige modeller af pladetektonikken forestillede man sig, at pladerne red ovenpå konvektionslommer ligesom på et transportbånd. Nu om dage mener de fleste forskere dog, at asthenosfæren ikke er kraftig nok til at kunne forårsage bevægelse direkte ved gnidningsmodstand. Pladernes eget træk opfattes almindeligvis som den stærkeste kraft, der virker direkte på dem, men formentlig har suget i bunden af gravsænkningerne en lige så stor betydning.

De vigtigste plader

De store plader er Kendte småplader er den Indiske Plade og den Arabiske Plade.

Historie og betydning

Kontinentalbevægelsen var kun én blandt mange idéer, der blev fremsat i slutningen af det 19. århundrede. I 1912 argumenterede Alfred Wegener kraftigt for tanken, men hans idéer blev ikke taget alvorligt af mange geologer, som efterlyste en drivkraft bag kontinenternes bevægelse.

Holdningen ændrede sig grundlæggende i 1960’erne; på baggrund af nogle nye opdagelser, først og fremmest den Midtatlantiske bjergkæde. Accepten af teorierne om kontinentalbevægelser og havbundens spredning (de to afgørende dele af pladetektonikken) kan sammenlignes med den Kopernikanske revolution inden for astronomien (se Nicolaus Copernicus). I løbet af ganske få år vendte billedet fuldstændigt inden for specielt geofysik og geologi.

Parallellen er slående: Ligesom astronomien før Kopernikus mest var beskrivende, men dog i stand til at lave forudsigelser, sådan beskrev de geologiske teorier før pladetektonikken de ting, man kunne observere, men kæmpede forgæves med at påvise nogen grundlæggende mekanisme.

Men den geologiske revolution var meget mere pludselig end den astronomiske. Hvad ethvert fornuftigt, videnskabeligt tidsskrift havde afvist i snesevis af år, blev ivrigt antaget i løbet af nogle få år i 1960’erne; og 1970’erne;. Før den tid var alle geologiske afhandlinger meget beskrivende, stenarter blev noteret og et udvalg af årsager blev opremset – af og til i anstrengende detaljer – som baggrund for, at de fandtes, hvor de nu gjorde. Beskrivelsesdelen gælder stadigvæk, men årsagsforklaringerne lyder temmelig meget som præ-kopernikansk astronomi.

Med pladetektonikken faldt svarene hurtigt på plads, eller man kunne se, hvordan svarene skulle findes. Pladernes sammenstød havde kraft nok til at hæve havbunden op i de tynde luftlag (koralrev blev f.eks. til Dolomitterne i Norditalien. Årsagen til, at oceangravene findes så mærkværdigt tæt på øbuer (f.eks. Japan) eller kontinenter (f.eks. sien), og forklaringen på deres tilhørende vulkaner stod klar, da man forstod processerne i forbindelse med pladernes overskydning.

Mysterier var ikke længere mysterier. Bundter af indviklede og undvigende svar blev fejet til side. Hvorfor var der slående paralleller mellem geologien i dele af Afrika og Sydamerika? Hvorfor så Afrika og Sydamerika påfaldende ud som et par puslespilbrikker, der burde kunne sættes sammen? Hvis man ønsker indviklede svar, kan man søge i de prætektoniske forklaringsmåde. Hvis man vil have enkelhed og noget, som forklarer en hel masse, bør man søge i pladetektonikken: En dyb gravsænkning ligesom den, der nu findes i Østafrika, havde åbnet sig og dannet Atlanterhavet, - og den arbejder stadigvæk.

Se også

  • Pladetektoniske emner
  • Tektoniske plader
  • Gensidig påvirkning mellem tektoniske plader


Denne artikel var dagens artikel den 11. februar 2005.



Denne artikel er fra Wikipedia.
Læs artiklen hos Wikipedia.





Bolig.com
Boligsite med dagligt opdaterede boligannoncer med lejeboliger og andelsboliger.
Andelsbolig i København
Lejebolig i København
Selvsalg
Realkreditlån
Boligadvokat
Rejseforsikringer
Husk at kontrollere din rejseforsikring inden du tager ud at rejse. Læs mere på: Rejseforsikring
Bilforsikringer
Sammenlign bilforsikringer og find information om forsikringer til din bil på: Bilforsikring


Denne artikel er fra Wikipedia. Denne hjemmeside tager ikke resourcer fra Wikipedias hardware. Netleksikon.dk støtter Wikipedia projektet finansielt. Indholdet er udgivet under GNU Free Documentation License. Kontakt Netleksikon, hvis ophavsretten er krænket.

Antal besøgende: